

A Small, Insect Inspired Robot that Runs and Jumps

Bram G. A. Lambrecht

Thesis Adviser: Dr. Roger D. Quinn

Master's Thesis Presentation August 6, 2004

H CASE Motivation for Small Robots

- Platform for autonomous or intelligent control research
- Distributed robotics
- Search and rescue
- Exploration
- Surveillance
- Insect inspired research

Wheels: smooth, firm terrain, continuous ground contact

Whegs:

- multiple spokes
- climbs like leg
- rolls like wheel
- constant motor speed

Legs: broken, uneven terrain, discontinuous contact, climbing

Quinn et al., (2001), CLAWAR

- Runs at 3 body lengths per second
- Climbs obstacles >1.5 leg length

- Small
- Mechanically simple
- Fast
- Less expensive
- Scalable
- Large payloads

Mini-Whegs 5 with *Blaberus gigantius*

Composite of video frames showing Mini-Whegs 5 traversing two 3.5 × 9 cm boards while running at 3 body lengths per second

EXASE Froghopper Jumping

0 Takeoff

+0.5

- Specialized rear legs
 - Not used during walking
 - Ridge on femur locks onto coxal protrusion
- Jumping
 - Muscle contracts slowly with legs locked in position
 - Femur and coxa disengage
 - Insect leaps over 100 body lengths high

Four-bar jumping mechanism concept

Mini-Whegs 4J Proof-of-concept

E CASE Mini-Whegs 4J Layout

EXASE Slip-Gear Jumping Activation

A-B: Slip-gear pinion retracts jumping mechanism C-D: Teeth disengage, and the jumping mechanism springs out

 A softer, preloaded spring stores more energy for the same displacement

Composite of video frames showing Jumping Mini-Whegs surmounting a 15 cm step

EXASE Improving Existing Components

Steering mechanisms

- Mini-Whegs 1, 2, and 3 use various flexible couplings for transmitting torque to the whegs
- Springs unwind or collapse
- Delrin® fatigues and snaps
- Wheg appendage design
 - Thin spokes provide little traction...or they get stuck and make the robot flip over.

EXASE Ball and Cup Universal Joint

Appendage Development

- A: Mini-Whegs 1
- B: Mini-Whegs 2,3
- C: Mini-Whegs 5
- D: Mini-Whegs 7

Short feet improve traction and smooth walking

- Rounded heel smoothes transition between steps
- Scalable design works for other size Whegs robots

Controllable Running and Jumping

 Mini-Whegs 6J combines features of Mini-Whegs 4J and Mini-Whegs 5.

E CASE Too Large, Too Heavy

Lighter

- Less than 100 grams
- Cheaper
 - Half the cost of Mini-Whegs 5
- Easier to Build
 - More off-the-shelf components
 - Fewer fasteners

- Modified servo drive vs. Maxon Motor
- Hollow aluminum axles
- Plastic sprockets and gears
- Single plastic chain
- Nylon fasteners
- All Delrin® frame
- Single 6V 2CR-1/3N cell

En CASE Single Drive Chain

 A single, acetal plastic drive chain saves space and weight in Mini-Whegs 7

EXPLORE Exploded View of Mini-Whegs 7

E CASE Results

- Small: 6 x 9 cm
- Light: < 90 grams</p>
- Cheap: < \$180</p>
- Mobile
 - Single 6V 2CR-1/3N cell
 - 2.7 body lengths per second
 - Pair of 3V CR2 cells in series (adds ~18 grams)
 - 3.8 body lengths per second
 - Obstacles > 1.25 leg length
 - Incline up to 25 degrees

CASE Mini-Whegs 8: Enclosed Batteries

- ABS body shell is lighter than Delrin®
- Same weight as Mini-Whegs 7 despite slightly larger size
- Easily carries a 50-100g payload

Goals for New Jumping Mini-Whegs

- Lightweight
 - Maintain weight reduction techniques of Mini-Whegs 7
 - Reduce weight in jumping mechanism components
 - Target weight < 200g</p>
- Small
 - Pack components closely
 - Single drive chain

steering servo (4.4g)

radio receiver (3.5g)

- Same sprockets, drive servo, and materials as Mini-Whegs 8
- Smaller steering servo, receiver, and speed controller by Cirrus
- Maxon jumping motor from Mini-Whegs 6J

CASE Layout of Mini-Whegs 9J

CASE Assembled Mini-Whegs 9J

Jumping Mechanism

- Weight
 - 191g
- Walking speed
 - ~3 body len./second
- Jumping:
 - 15-18cm

- Alternative motors and transmissions
 - More force for higher jumps
 - Faster walking
- Torsion springs could fit entirely inside chassis
- FDM or injection molded chassis construction
- Improved control system for jumping
- Sensor integration

CASE Acknowledgments

- Thanks to:
 - Roger Quinn, Malcolm Cooke, Vikas Prakash
 - Jeremy Morrey, Andrew Horchler, Bill Lewinger for previous work, ideas, and assistance
 - Christie for helping make parts this summer
 - Everyone else who has made my experience with the Biorobots lab fun and rewarding

Questions?

